
Atticus Rex
CMDA 4604
Term Project May 5, 2023

Introduction

The heat equation was first formulated in the 19th century. Many methods exist to solve the
heat equation analytically and numerically, but no method is perfect. In its general form,
the heat equation can be written as following:

∂u

∂t
(x, t)− ∂

∂x
[k(x)

∂u

∂x
](x, t) = f(x, t) (1)

Within the context of CMDA 4604, we have learned various methods to solve the heat
equation analytically and numerically, such as the spectral method, finite element method,
and time-stepping methods based on the derivative from the finite-element method. How-
ever, none of these methods are perfect. Many are computationally intensive, suffer from
stability issues, or simply difficult to solve by hand in the case of when k(x) is an irregular
or nonuniform function.

This paper examines the use of a novel technique that uses the auto-differentiation ca-
pability of neural networks to solve the heat equation. This is a method that was proposed
in Raissi, 2019 et al. [1]. This method makes use of neural networks as universal function
approximators to match the solution to a partial differential equation [2].

1 Formluation of Cost Function

Given the following partial differential equation:

ut = (k(x)ux)x

We seek a function u(x, t) that satisfies this function. First, we need to define a cost func-
tion that preserves the initial conditions, boundary conditions and dynamics of the equation.
Specifically in this problem, I will use k(x) = |x|, but with periodic boundary conditions
specified by the following:

t ∈ [0, 1], x ∈ [−1, 1]

u(−1, t) = u(1, t)

ux(−1, t) = ux(1, t)

u(x, 0) = u0(x)

Therefore, the cost function is generally:

C = MSE0 +MSEb +MSEf

1

Atticus Rex
CMDA 4604
Term Project May 5, 2023

Where f(x, t) is the following:

f(x, t) = ut − (k(x)ux)x

Thus, each cost function becomes:

MSE0 =
1

N0

N0∑
i=1

|û(xi, 0)− u0(xi, 0)|2

MSEb =
1

Nb

Nb∑
i=1

|û(−1, ti)− û(1, ti)|2 + |ûx(−1, ti)− ûx(1, ti)|2

MSEf =
1

Nf

Nb∑
i=1

|ût(xi, ti)− (k(x) · ûx(xi, ti))x|2

Using the Finite Element Method with Time-Stepping

to Provide Reference

The finite element method uses a discretization of both the spatial and temporal dimension
of the differential equations to produce an approximation of the function. Given the heat
equation (1):

ut = uxx + f(x, t)

We can multiply both sides of the equation by some candidate function v(x) to lead to
the weak formulation of the differential equation:

d

dt
⟨u, v⟩ = ⟨uxx, v⟩+ ⟨f, v⟩

The inner product ⟨uxx, v⟩ can be written as an energy inner product.

⟨uxx, v⟩ = −
∫ 1

0

ux(x, t)vx(x, t)dx = −a⟨u, v⟩

This produces the following general weak form:

d

dt
⟨u, v⟩+ a⟨u, v⟩ = ⟨f, v⟩

It’s important to note that v(x) has to satisfy the same boundary conditions! Now pick
some space Vn = Span{ϕ1, ..., ϕN} and look for some u(t) ∈ Vn satisfying:

2

Atticus Rex
CMDA 4604
Term Project May 5, 2023

d

dt
⟨u, v⟩+ a⟨u, v⟩ = ⟨f, v⟩

Note that this space Vn can be any set of candidate functions that we choose; in this paper
we will use hat functions to approximate the function. Now, the full solution, u(x, t) can be
written as the sum of each of the candidate functions which depends on space multiplied by
some constant that depends on time.

u(x, t) =
N∑
j=1

cj(t)ϕj(x)

v(x) = ϕk(x)

We can substitute this result into our weak formulation to yield the following:

d

dt

N∑
j=1

cj(t)⟨ϕj, ϕk⟩+
N∑
j=1

cj(t)a⟨ϕj, ϕk⟩ = ⟨f, ϕk⟩

And we see that this is essentially a single order linear system of Ordinary Differential
Equations with a mass and stiffness matrix (M and K) as well as a load vector, f :

M
dc

dt
+Kc = f(t)

Decomposed, we can see this abreviation of the system:

[
⟨ϕj, ϕk⟩

] c′1(t)
...

c′N(t)

+
[
a⟨ϕj, ϕk⟩

] c1(t)
...

cN(t)

 =

⟨f, ϕ1⟩
...

⟨f, ϕk⟩

Hence, the continuous-time general solution to this system is:

c(t) = e−M−1Ktc(0) +

∫ t

0

e−M−1K(t−s)M−1f(s)ds

However, this is cumbersome to compute, and thus we will be using a discrete time-
stepping method to calculate this as well, specifically 4th-order Runge Kutte integration
solving the following system:

c′(t) = −M−1Kc+M−1f(t)

Solving this equation determines how the coefficients c(t) evolve over time, and multiply-
ing these results with each ϕj(x) determines the spatial distribution. The initial conditions
used in this paper were:

3

Atticus Rex
CMDA 4604
Term Project May 5, 2023

u0(x) =

−1, x ∈ [−1,−0.5]

0, x ∈ [−0.5, 0.5]

1, x ∈ [0.5, 1]

This reference was simulated in MATLAB to show how the conditions within the bar
would evolve over time. This is shown in Figure 1.

Figure 1: Surface Plot of Heat Distribution within the Bar

Defining Network in PyTorch

The library used to run the neural network and perform the auto-differentiation necessary
to minimize this cost-function was PyTorch. The literature recommended using a neural
network with 6 hidden layers, 100 hidden neurons per layer and a hyperbolic tangent (tanh)
activation function. This model was produced with the following:

1 # Define the neural network architecture

2 class Net(nn.Module):

3 def __init__(self):

4 super(Net , self).__init__ ()

5 self.fc1 = nn.Linear(2, 100)

6 self.fc2 = nn.Linear (100, 100)

4

Atticus Rex
CMDA 4604
Term Project May 5, 2023

7 self.fc3 = nn.Linear (100, 100)

8 self.fc4 = nn.Linear (100, 100)

9 self.fc5 = nn.Linear (100, 100)

10 self.fc6 = nn.Linear (100, 100)

11 self.fc7 = nn.Linear (100, 1)

12

13 def forward(self , x):

14 x = torch.tanh(self.fc1(x))

15 x = torch.tanh(self.fc2(x))

16 x = torch.tanh(self.fc3(x))

17 x = torch.tanh(self.fc4(x))

18 x = torch.tanh(self.fc5(x))

19 x = torch.tanh(self.fc6(x))

20 x = self.fc7(x)

21 return x

22

23 net = Net().to(device)

Subsequently, a custom cost function had to be defined based on the second section. This
was defined with the following:

1 # Define the loss function

2 def custom_loss(u0 , x0 , x):

3 criterion = nn.MSELoss ()

4 # Calculating the initial condition loss

5 MSE_0 = criterion(net(x0), u0)

6

7 # Calculating the Boundary Loss

8 N = 100

9 xn1 = get_boundary_vals(N, -1, 0, 0.1).to(device)

10 x1 = get_boundary_vals(N, 1, 0, 0.1).to(device)

11 MSE_b_f = criterion(net(xn1), net(x1))

12

13 # Calculating the Boundary Loss (Derivative)

14 upredn1 = net(xn1)

15 du_din = torch.autograd.grad(upredn1 , xn1 , grad_outputs=torch.

ones_like(upredn1).squeeze (-2), retain_graph=True , create_graph = True)

[0]

16 du_dx_n1 = du_din [:,1]

17

18 upred1 = net(x1)

19 du_din = torch.autograd.grad(upred1 , x1 , grad_outputs=torch.ones_like(

upred1).squeeze (-2), retain_graph=True , create_graph = True)[0]

20 du_dx_1 = du_din [:,1]

21

22 MSE_b_d = criterion(du_dx_n1 , du_dx_1)

23

24 # Calculating the PDE Equation Loss

25 upred = net(x)

26 du_din = torch.autograd.grad(upred , x, grad_outputs=torch.ones_like(

5

Atticus Rex
CMDA 4604
Term Project May 5, 2023

upred), retain_graph=True , create_graph = True)[0]

27 #du_din = torch.tensor(du_din , requires_grad=True)

28 du_dt = du_din [:,0]

29 d2u_din2 = torch.autograd.grad(du_din , x, grad_outputs=torch.ones_like

(du_din), retain_graph=True)[0]

30 d2u_dx2 = d2u_din2 [:,1]

31

32 MSE_f = criterion(du_dt , d2u_dx2)

33

34 #return MSE_0 + 0.5* MSE_b_f + 0.5* MSE_b_d + MSE_f

35 return MSE_0 + MSE_b_f + MSE_b_d + MSE_f

Lastly, the network needed to be run for many epochs to converge. This was accomplished
with the following code. I’m leaving out a lot of the boring nut-and-bolt code here but I
wanted to include the important code in the report.

1 # Define the loss function and optimizer

2 optimizer = optim.Adamax(net.parameters (), lr=1e-4)

3

4 # Train the network

5 for epoch in range (10000):

6 optimizer.zero_grad ()

7 outputs = net(x)

8 loss = custom_loss(u0 , x0 , x)

9 loss.backward ()

10 optimizer.step()

11

12 if epoch % 100 == 0:

13 print(f"Epoch {epoch}, loss = {loss.item()}")

Training Model and Evaluating Results

After 10,000 epochs, the model converged to a final cost function on the order of 10−5. The
first test would be to simulate the initial conditions to see whether the PINN matches the
initial conditions.

6

Atticus Rex
CMDA 4604
Term Project May 5, 2023

Figure 2: Comparison of initial conditions with Neural Network and True Initial Conditions.

So good so far! The next step would be to see if the surface plot of the neural network
approximation looks anything like the FE Approximation. This is depicted in Figure 3.

Looks pretty good to me! However, what we’re really here for is the error. We can plot
this as a surface plot as well in Figure 4.

7

Atticus Rex
CMDA 4604
Term Project May 5, 2023

Figure 3: Neural Network Approximation of Heat Equation with Periodic B.C.’s.

As shown in the Figure 4, the PINN has some trouble in the beginning when the dynamics
are changing quite a bit with respect to time, however the error gets quite small once the
behavior is a bit more stable. This said, this shows a maximum error of less than 0.1.

8

Atticus Rex
CMDA 4604
Term Project May 5, 2023

Figure 4: Error between Neural Network and Finite Element Approximations.

9

Atticus Rex
CMDA 4604
Term Project May 5, 2023

Conclusion and Discussion of Results

In this paper, we demonstrated how neural networks can act as universal function approxi-
mations to approximate the solutions to partial differential equations. This was accomplished
through the potent automatic differentiation capabilities present in Neural Networks to ef-
ficiently compute the gradient. Auto-differentiation involves a computational graph of each
tiny step involved in taking some input to some output and utilizing the chain rule to compute
the derivative at each teeny step.

With this algorithm, we can optimize some seriously complex cost functions, making this
an exceedingly useful optimization tool. I only became aware of automatic differentiation
within the past year. My guess is this will be used to solve quite a bit of open computational
problems in the coming years.

In this paper, we solved a cost function that minimized the three stipulations of the
solution to a partial differential equation: 1.) The function matches the initial conditions
when t = 0 2.) the function matches the boundary conditions at all times 3.) the function
satisfies the differential equation.

Then, this cost function was implemented in PyTorch (not a trivial task, by the way -
very headache inducing) and a reasonably sized neural network with about 60,000 parameters
was trained to approximate the solution to the differential equation. And after many hours
of failure and crazy debugging, it actually did it pretty accurately! I am sure if I had trained
it for longer, the error could have been lowered, but it did prove itself as an effective tool for
approximating the solution to partial differential equations without having to do extensive
math to compute the spectral or finite element method solutions.

References

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed Neural Networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are univer-
sal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

10

	Formluation of Cost Function

