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ABSTRACT
This project seeks to discover governing differential equations di-
rectly from data to determine the overall course of an epidemic.
The two methodologies used to accomplish this will be the popular
SINDy algorithm, developed by Brunton and Kutz et al. as well
as the symbolic regression model applied to the derivative of the
model. The group successfully used both methods to recover the
SIR model from synthetic data with noise artificially added and to
predict COVID-19 data. The PySR model, when effectively regular-
ized showed promise in being able to robustly recover governing
differential equations in the presence of noisy data.

1 INTRODUCTION
Models are essential to computational epidemiology to predict the
behavior of a disease outbreak, to identify stability and equilibrium
points, and to explain the underlying dynamics of an outbreak.
The availability of data is an essential component to modeling the
outbreak of disease and real-world data tends to be sparse and in-
complete. Ordinary Differential Equation (ODE) models have been
used to successfully model the spread of disease in ideal conditions
for hundreds of years, operating under assumptions such as perfect
mixing of a population, lack of mutations, lack of interventions,
and homogeneous population demographics like age, susceptibility,
and so-on [7].

Network Models are another approach to modeling infectious
disease. These use graphs/networks to model the propagation of
disease from one entity to another [10]. This allows for a population
to be much more heterogeneous and model specific interactions
between cliques or individuals. However, the number of parameters
in a network model tends to be much higher than ODE models.
In class, we learned of the EINN (Epidemiology Informed Neural
Network) framework which trains neural networks as universal

.
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function approximators on epidemiological constraints baked into
loss functions [11]. While neural networks perform extremely well
with large amounts of data, epidemiological data is often noisy and
in low or incomplete quantity. Further, neural networks are not
nearly as interpretable as ODE models [7, 11].

The emergence of data-driven modeling to discover underly-
ing differential equations from data has enjoyed numerous break-
throughs since the advent of digital computing [8, 9] . The Sparse
Identification of Nonlinear Dynamics algorithm originally proposed
by Brunton et al. provides a powerful framework for discovering
nonlinear dynamics from noisy data. Model Predictive Control
(MPC) shows how to implement epidemiological constraints such
as infection thresholds and hospital capacities to quantify real-
world constraints on an epidemiological model [4] . Further, sym-
bolic regression algorithms that employ metaheuristic optimization
have also shown promise in not only accurately modeling physi-
cal systems, but providing interpretable equations to explain the
underlying dynamics. Further, these models can be regularized by
restricting the sparsity or number of terms to generalize quite well
with far fewer parameters than the aforementioned network models
[3].

When modeling the spread of an infectious disease, there is
generally a tradeoff between the complexity of the model and its
ability to generalize. Make a model too simple and it won’t give
an accurate enough representation of the system. Make a model
too complex and it runs the risk of overfitting to the training data.
This is why person-to-person models are exceedingly difficult to
calibrate and scale accurately.

2 PROBLEM STATEMENT
This project seeks to improve upon current methods for discovering
governing equations of epidemiological spread. Specifically, we seek
to combine advances in symbolic regressionmethods and the SINDy
framework using a more diverse library of candidate functions to
discover more robust ODE models for predicting the spread of
infectious disease. Specifically, we seek to validate the use of these
models with synthetic data in order to ensure their capability to
recover governing differential equations. Subsequently, wewill then
apply this model to COVID-19 data in the Atlanta Metropolitan
area to examine its ability to scale to real-world applicaitons.

3 CURRENT METHODS
Horrocks et al. uses SINDy to model the temporal dynamics of
Measles, Varicella, and Rubella in various countries [7]. The results
were promising, but limited; SINDy makes use of a library of candi-
date functions to account for nonlinearity in the data [6]. However,
the candidate functions used for the final models of SINDy in this
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paper were only of polynomial nonlinearity up to order 3. There is
some serious upside to experimenting with sinusoidal terms in this
kind of analysis as shown in [12] to model seasonal changes and
variant mutations in epidemiological spread. Horrocks et al. cites
not wanting to overfit by not using higher order terms, but this
causes the model to perform poorly on certain datasets. Further,
the model was quite sensitive to noise.

Interestingly, Horrocks et al. also uses spectral density plots in
the frequency domain to gain insight into the cyclical nature of
the epidemics. The results from this analysis were unconclusive
with some diseases able to be analyzed in this way but others not
holding up well.

Symbolic regression is a new method proposed in [5] for discov-
ering underlying equations from data. There has been limited work
in discovering ODEs using symbolic regression and also limited
work in applying SR to epidemiological data. However, the tourna-
ment selection methods and other optimization schemes used in
SR have had success in physical applicaitons. Further, constraints
can be placed on the complexity of the equation sets in Symbolic
Regression to regularize and avoid overfitting [3].

We were unable to find a paper that applied Symbolic Regression
to discovering governing equations to epidemiological dynamics,
however this ability to regularize and control the complexity of
the equations is desirable and mirrors the aims of the MDLInfer
algorithm.

4 DATA COLLECTION AND SYNTHESIS
Improving upon the results found in Horrocks et al makes sense
in demonstrating the utility of the methods. This data is available
in the Materials and Methods section of that paper [7]. To demon-
strate the modern utility of data-driven symbolic regression/SINDy
methods, COVID-19 data is available in high volumes frommultiple
sources. COVID-19 case and death counts per day provide a good
baseline approximation for the recovery and infection rates. This
data is widely available through the CDC in .csv form along with
key demographic data as well [2]. Lastly, to augment the raw dis-
ease data, we’d like to include the following data sources to capture
changing behaviors and infection rates:

• Search Engine data for symptoms Include how many
people are searching for symptoms of the disease over time to
help give an indicator of the severity. This data is available on
Google Trends from 2004 onwardwhich could be quite useful
in seeing how many people are searching for symptoms of
the disease.

• Temperature and Precipitation Data Include the average
temperature and the number of hours of precipitation each
day as data points. This information can be found on the
NOAA website [1].

We have been able to download the data from Google’s Open-
Data for COVID and isolate just the Atlanta Metropolitan Area. We
have also been able to isolate google searches for just the Atlanta
Metropolitan Area, though it’s difficult to say how accurate these
terms are. That said, everything is compiled in a GitHub document
and cleaned. The group used a Savitsky-Golay filter to smooth the
COVID Epidemiological data such as cases and deaths, so the algo-
rithm could have a more accurate representation of the derivative.

This is part of the preprocessing stage. Preprocessing is impor-
tant because, without it, the model would have to process through
irrelevant data at every iteration, making the model untenably slow.

Figure 1: The prediction of the SINDy Algorithm on COVID
Cases and Deaths. The Algorithm was trained on days 0-600
and allowed to propagate forward for days 600 to 800.

We will also simulate SIR data using the governing SIR ODE
model, which will be discussed in detail in the Results section of
the paper.

5 ALGORITHMS & TECHNIQUES
We will have to do significant preprocessing of the infection and
recovery rates to infer real rates of reporting and recovery. We will
use the method in [6] which formulates a reporting rate with birth
and death rates to approximate infection and recovery rates.

We will divide the population at the city level into three groups:
susceptible, infected and dead. We will try to perform minimal
inference and calibrate the models on deaths rather than try to
extrapolate a recovered population.

SINDy Framework
The SINDy framework assumes that the underlying dynamical
system can be modeled in terms of their derivatives in the following
general form:

𝑑

𝑑𝑥
𝑥 (𝑡) = 𝑓 (𝑥 (𝑡))

We use a matrix of snapshots of a state, 𝑥 , over a given time, the
only difference being we also need to sample the derivative of 𝑥 .
This can be illustrated as:

X =


| | |
𝑥1 𝑥2 ... 𝑥𝑁
| | |


𝑇

, X =


| | |
¤𝑥1 ¤𝑥2 ... ¤𝑥𝑁
| | |


𝑇

And then the library of nonlinear candidate functions can be
modeled by Θ(X). These functions are entirely up to the user. The
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more functions, the more computational cost, but the higher proba-
bility that the model will converge to the correct governing equa-
tions. An example of Θ(X) might be:

Θ(X) =
[
1 X X𝑃2 X𝑃3 ... sin(X) ... ln(X) ... 𝑒X]

In this case, 𝑃2, 𝑃3 and so on represent polynomial combinations
of a certain order. Once this matrix of candidate functions evaluated
at every single datapoint is formed, the following sparse regression
equation can be solved:

X = Θ(X)Ξ

where Ξ is a matrix of weights that shows how many variables
of Θ(X) are present in the dynamics. The sparse linear regression
involves some sparsity parameter, 𝜆, to cut off terms that are not
very present. The idea is that the least squares regression is solved
and an initial Ξ is obtained. Then, every term in Ξ that is less than
𝜆 is set to zero. And the least squares regression is repeated, but
only onto the terms that have not been set to zero. This process is
repeated until only a handful of terms are remaining and the rest
are zero.

Possibly the most overlooked component of this algorithm is
the ability to sample the derivative. The original SINDy paper in-
troduced noisy signals into their analysis and illustrated how the
model still held up reasonably well with various noise-levels. How-
ever, to smooth the noise, the authors used the TVD algorithm
described in the introduction. This is an incredibly computationally
costly algorithm to run at the scale that it was used in this paper,
having hundreds of gradient descent steps involving matrices of
size 100,000 x 100,000 individually for the x, y, and z coordinates of
the Lorenz System [4].

What makes epidemiological systems so applicable to the SINDy
algorithm is the fact that they report the derivative of total infec-
tions and deaths by reporting counts per day as opposed to total.
Our hope is that this will greatly increase the accuracy of the learned
dynamics as opposed to numerically calculating derivatives.

Symbolic Regression
Symbolic Regression has been performed in various ways for hun-
dreds of years. Recent developments have shown great promise
in using trees of function operations and Genetic Programming
techniques to optimize symbolic representations of functions. In
Figure 2, we see the computation tree and the crossover process for
creating variability in the solutions.

Figure 2: A representation of the function trees and a
crossover method to induce variety in the candidate solu-
tions.

In this study, we will be using the PySR Optimization framework
which makes use of a Tournament Selection (TS) framework which
is depicted in Figure 10. This consists of a population of random
trees selected from the available function operations and takes
the fittest trees from this population. With the fittest trees, the
algorithm either mutates one node of the tree by changing the
operation, crosses two trees as shown in Figure 2, simplifies the
trees by combining like operations (think addition and addition), or
optimizes the coefficients in the solution via gradient descent [3].

We will compare the results in this method to the SINDy frame-
work to evaluate which is more effective at generalizing and pre-
dicting disease dynamics.

Figure 3: The Tournament Selection optimization method
that

2023-12-19 14:45. Page 3 of 1–9.
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6 RESULTS
6.1 Synthetic Data Validation
To establish a baseline efficacy for the SINDy and SR algorithms to
determine symbolic differential equations, we produced the follow-
ing curve from the standard SIR ODE model for infectious diseases,
formulated by:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆 · 𝐼 (1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆 · 𝐼 − 𝛾𝐼 (2)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (3)

We then used a 4th order Runge Kutte Solver to simulate the
progression of these dynamics with 𝛽 = 0.1, 𝛾 = 0.01, 𝑆0 = 0.99, 𝐼0 =
0.01 and 𝑅0 = 0.0, with some normally distributed random noise
added to the model. This is depicted in Figure 4.

Figure 4: Synthetic SIR model simulation (Noise:N(𝜇 = 0, 𝜎 =

0.005)).

6.2 SINDy Results on Synthetic Data
We regressed the SINDy algorithm on the synthetic data. One signif-
icant challenge of the SINDy algorithm is the need for a numerical
sample of the derivative of the desired signal. In practice, numeri-
cally differentiating a noisy signal with a finite-difference derivative
means a derivative in which the noise is amplified. To get around
this, we used a forward-difference derivative and then smoothed it
with a Savitsky-Golay Filter to denoise the derivative. Figure 5.

Figure 5: SINDy Derivative Prediction (MAE = 0.000789).

Once we solved for the Ξ matrix, we used it within a 4th Order
Runge Kutte solver to simulate the system from the same initial
conditions. The result is shown in Figure 6.

Figure 6: Simulated Epidemic using SINDy Model (MAE =
0.0582).

In our best model, we produced a Mean Absolute Error (MAE) of
0.0582 between the ground-truth data.With this model, theΞmatrix
corresponds to the active terms within our candidate functions. The
computed Ξ matrix is shown below:

Table 1: SINDy Reconstruction of SIR ODEs

Terms 𝑆 𝐼 𝑅 𝑆2 𝑆𝐼 𝑆𝑅 𝐼2 𝐼𝑅 𝑅2

𝑑𝑆/𝑑𝑡 0 0 0 0 -0.09412 0 0 0 0
𝑑𝐼/𝑑𝑡 0 -0.0078 0 0 0.0892 0 0 0 0
𝑑𝑅/𝑑𝑡 0 0.0098 0 0 0 0 0 0 0

While this is rather encouraging, there are some major consider-
ations that will be addressed in the discussion section.

2023-12-19 14:45. Page 4 of 1–9.
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• Sensitivity to Noise: The SINDy Algorithm is highly sensi-
tive to noisy data, and in this case, the clarify of the output
matrix Ξ, was highly dependent on an effective window
length for the SG-Filtering algorithm. Further, past a noise
level of 0.02, we could not reliably reproduce the SIR Model.

• Amount of Data: To produce the model in the results, we
had to train themodel onmore like 400-500 days of pandemic
data under different initial conditions, which doesn’t have
great implications on the ability to apply this to real-world
data that could be much noising and be far more reactive to
external measures.

• Optimization Method: The original SINDy paper by Brun-
ton et al. uses Sparse Linear Regression to force the majority
of the coefficients to zero. However, we found much better
results employing the MDL framework and forcing the Ξ
matrix to have a certain number of nonzero terms. We forced
the Ξ matrix to five nonzero terms and it converged to the
correct solution eventually. However, we had to tweak many
parameters to force it to converge to the correct solution.
Imperfect knowledge of the underlying dynamics may sig-
nificantly impede the performance/ability to converge onto
correct solutions.

Symbolic Regression Results on Synthetic Data
The Symbolic Regression algorithm is much more computation-
ally costly with the tournament selection method, usually taking
multiple minutes to run, however has powerful nonlinear opti-
mization techniques and regularization methods that make this
algorithm quite powerful if correctly applied. When regressed on
the numerical derivatives of the SIR model, the algorithm produced
the following symbolic results–the following equations are in the
exact form the output returned them (Substituting 𝑆 , 𝐼 , and 𝑅 for
readability):

𝑑𝑆

𝑑𝑡
= (((−0.09922531 ∗ 𝑆) + −0.00058495) ∗ 𝐼 )

𝑑𝐼

𝑑𝑡
= (((𝑆 + −0.09877744) ∗ 𝐼 ) ∗ 0.09526928)

𝑑𝑅

𝑑𝑡
= ((𝐼 ∗ −0.0007062112) + 0.010293879 ∗ 𝐼 )

Simplifying these equations yields:

𝑑𝑆

𝑑𝑡
= −0.09923𝑆𝐼 + −0.000584𝐼

𝑑𝐼

𝑑𝑡
= 0.095269𝑆𝐼 − 0.009410𝐼

𝑑𝑅

𝑑𝑡
= 0.009587𝐼

This result is almost identical to the governing SIR ODEs, with
one extraneous term in 𝑑𝑆/𝑑𝑡 . This extraneous term has a very low
coefficient, however, and should not significantly affect results. Let
us examine what we get when we simulate this ODE compared to
the actual SIR model:

Figure 7: Simulated ODE with Symbolic Regression-Created
SIR Model (MAE = 0.0276.)

Figure 8: Plot of Symbolic Regression-Approximated Deriv-
ative vs. Smoothed Numerical Derivative of SIR equation
(MAE = 0.000193)

As shown in figures 7 and 8, the Symbolic Regression ODE is
highly accurate of the original results, demonstrating the effective-
ness of the model to be used to model real-world data.

The group was also interested in how the algorithm performed
when noise was amplified. The following figure shows the resulting
dynamics simulated from ODEs when the noise is amplified to have
a standard deviation of 6% of the population (a lot of noise!):

2023-12-19 14:45. Page 5 of 1–9.
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Figure 9: Symbolic Regression-Produced ODE
with highly noisy data (𝜇 = 0, 𝜎 = 0.06,
MAE = 0.0389 compared to noiseless data)

As shown in figure 9, the ODEs produced from the Symbolic
Regression was able to successfully reproduce the dynamics to a
very high degree of accuracy compared to the noiseless training
data.

Candidate functions produced:

𝑑𝑆

𝑑𝑡
= −0.0864𝑆𝐼 + 0.000612

𝑑𝐼

𝑑𝑡
= 0.0822𝑆𝐼 + −0.00796𝐼

𝑑𝑅

𝑑𝑡
= 0.00845𝐼 + 0.000303

While the coefficients differ a bit from the true governing coef-
ficients by about 0.01-0.02 and there are small random numerical
intercepts added on, the structure of the governing ODE is still
preserved, which is highly desirable for real-world experimenta-
tion. Further, we wished to test the ODEs from the noisy data on
different initial conditions to test any overfitting to training data.
This is shown in

Figure 10: Symbolic Regression-Produced ODE simulation
with different initial conditions compared with ground truth.
SR algorithmwas trained on highly noisy data (MAE = 0.0427,
𝜇 = 0, 𝜎 = 0.06)

Additionally, we ran the symbolic regression algorithm on the
data with time as the input data and S, I, and R as the target labels
for both noisy and ideal generated datasets. While the predictions
for the noisy data were slightly worse than the predictions based
on the model run with one of SIR as the target label set and the
other two as the input data (for example, when prediction X, I and
R were the input data, the predictions for the ideal datasets were
dramatically incorrect. This brings up a possible point of interest
for further study on how the amount of noise effects convergence
speed and ability. Figure 11 displays these results for the I data.

Figure 11: The first graph is a graph of ideal data vs the predic-
tions from a model trained on the ideal data (RMSE = .2460).
The second graph is a graph of noisy data vs the predictions
from a model trained on the noisy data (RMSE = .0199). The
third graph is a graph of ideal data vs the predictions from a
model trained on the noisy data (RMSE = .0266). For contrast,
the samemodel trained with noisy S and R to predict I had an
RMSE of .0149 compared to noisy data and .0134 compared
to ideal data.
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SINDy Results on Real-World Data
To demonstrate the effectiveness of this algorithm on real-world
data, we used the aforementioned COVID-19 pandemic data from
Atlanta, GA to attempt to produce an autoregressive model with
the derivative. The model was trained on 600 days of actual COVID
Data whichwas augmented with weather and symptom-search data.
The model was then tested on an additional 300 days of data which
contained a large spike which had not been seen in the training
data. The trained SINDy model was able to produce the dynamics
shown in Figure 12.

Figure 12: SINDy Model Prediction (Test MAE = 567.29 for
new cases, and 4.14 for new deaths.)

What is interesting is the model was able to predict a spike larger
than it had ever seen before in the derivative, indicating an ability
to generalize well to unseen data. The SINDy algorithm produced
governing equations that weighted the search data quite heavily,
but were too long to include in this report (There were over 40
terms in each equation).

Symbolic Regression on Real-World Data

Figure 13: Symbolic Regression Model Prediction (Test RMSE
= 21475.38 for new cases, and 51.31 for new deaths.

Similarly to the SINDy model, we used the aforementioned COVID-
19 pandemic data from Atlanta, GA to attempt to produce an au-
toregressive model with the derivative; additionally, the model was
trained on 600 days of actual COVID Data which was augmented
with weather and symptom-search data. The model was then tested
on an additional 103 days of data to determine how effective it was
at predicting future cases and deaths. Despite the cases prediction
having a much higher RMSE than the deaths graph, to the naked
eye, the cases graph appears to be a better predictor than the deaths
graph.

7 CONCLUSION AND DISCUSSION
Advantages of SINDy

• Computational Cost: Because the SINDy algorithm is ef-
fectively solving a linear least squares problem with some
regularization, it is very quick to compute for large datasets,
making it an ideal candidate for physical experiments with
high temporal resolution as used in Brunton et al. [4]. It
should be said, however, that computing the Total Variation
Regularized Derivative as the authors did in the original
SINDy paper is highly computational costly and direct dif-
ferentiation methods should be explored.
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• Simplicity ofResults: The SINDy algorithm produces highly
interpretable results that make displaying equations like in
Table 1 effective in research applications.

Limitations of SINDy
• Sensitivity to Noise: The SINDy Algorithm is highly sensi-
tive to noisy data, and in this case, the clarify of the output
matrix Ξ, was highly dependent on an effective window
length for the SG-Filtering algorithm. Further, past a noise
level of 0.02, we could not reliably reproduce the SIR Model.

• Quantity of Data: To produce the model in the results, we
had to train themodel onmore like 400-500 days of pandemic
data under different initial conditions, which doesn’t have
great implications on the ability to apply this to real-world
data that could be much noising and be far more reactive to
external measures.

• Optimization Method: The original SINDy paper by Brun-
ton et al. uses Sparse Linear Regression to force the majority
of the coefficients to zero. However, we found much better
results employing the MDL framework and forcing the Ξ
matrix to have a certain number of nonzero terms. We forced
the Ξ matrix to five nonzero terms and it converged to the
correct solution eventually. However, we had to tweak many
parameters to force it to converge to the correct solution.
Imperfect knowledge of the underlying dynamics may sig-
nificantly impede the performance/ability to converge onto
correct solutions.

• Inflexibility of Candidate Functions Not only does the
user have to specify which candidate functions that the func-
tion should investigate, which means all polynomial candi-
date functions up to some order, and any others, but there
is also no ability to nest candidate functions, nor use expo-
nential functions. This is a major drawback of this algorithm
compared to Symbolic Regression.

Advantages of Symbolic Regression
• Nested Candiate Functions: The ability of the SR algo-
rithm to not only nest functions within other functions, but
also optimize the coefficients within the nested functions
makes this a much more robust algorithm for reliably finding
good approximations of underlying ODEs. For example, if
SINDy wanted to use sinusoidal functions, it cannot modify
the 𝜔 on the inside of the sin(𝜔𝑥) function, nor can it put
any other coefficients or operators within it. SR does not
suffer from this problem.

• Robust Regularization: As described previously, the SINDy
algorithm was rather difficult to regularize for a desired
number of coefficients. With the SR algorithm, we are able
to specify the max-depth of the computational tree as well
as the maximum complexity so only candidate soultions
that satisfy this criteria are chosen. This turns out to be
much more powerful in constraining the complexity of the
overall model instead of using some sort of linear regression
regularization technique as SINDy does.

• Quantity of Data: Like the SINDy algorithm the SR algo-
rithm suffers when the quantity of data is low. However,

unlike the SINDy algorithm the SR library was able to re-
cover a good approximation of the underlying differential
equations from one instance of data, making it a much more
robust candidate for real-world use.

Limitations of Symbolic Regression
• Computational Cost/Complexity: Because this optimiza-
tion algorithm runs on a population-based tournament se-
lection algorithm that includes mutations, crossovers, and
gradient descent optimization with multiple populations of
many agents, this is a costly algorithm to run. Further, as the
complexity and depth of the candidate functions increase,
the amount of time to convergence increases exponentially.
Given the random nature of this algorithm, we aren’t sure at
what rate the runtime grows, but in our experience, adding
one or two more candidate functions, increasing the popula-
tion size by 50% or increasing the model complexity by 50
% would more than triple the runtime of the algorithm and
would not guarantee convergence.

• Extraneous Candidate Functions: The more candidate
functions the algorithm is allowed to use means that the
model has a much more robust hypothesis class of composite
functions to use. This being said, however, this also makes
the probability of convergence onto a random combination
of functions that happens to have a low MAE quite high.
Initially, we used all kinds of candidate functions like logs,
square roots, exponential functions, sinusoidal terms, and
so-on. However, this produces so many exponentially more
options for the function to iterate through that not only does
it heavily extend computational time, it usually converged
onto some mess of nested nonlinear functions that happened
to approximate the derivative well.

• Sensitivity to Noise: Like SINDy, the Symbolic Regression
algorithm is still sensitive to noise and the more noise, the
less likely the algorithm converges to the correct solution.
This can be fixed with some smoothing of the derivative
and the original funciton, but it still has potential to sway
the accuracy of the results quite a bit. However, symbolic
regression sometimes performs better with a small amount
of noise than with no noise.
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